

Binarity and Magnetic Interactions in various classes of Stars: The BinaMIcS project

E. Alecian IPAG

<u>Collaborators</u>: C. Neiner, G. Wade, S. Mathis, J. Morin, G. Hussain, A. Tkachenko, C. Folsom, S. Gregory, A. ud-Doula, J. Grunhut, D. Cébron and the BinaMIcS collaboration

BinaMIcS

Binarity and Magnectic Interaction in various classes of stars

• Aim: use the binarity to bring constraints on the physical processes of a magnetic star

Problematics

How do tidally-induced internal flows impact fossil or dynamo fields ?

- An initially eccentric system with non-synchronised, non-aligned components => asymptotic state where, orbit is circular, components are synchronised and spins are aligned
 - due to transfert of the kinetic energy of tidal flows to heat
- During this process 3 type of velocity fields are generated:
 - equilibrium tide (3D large scale flow, Rémus et al. 2012)
 - dynamical tide (helical oscillation, Ogilvie & Lin 2007)
 - spin-over flow (instability of gravito-inertial waves, Cébron 2011)

Binarity and Magnetic Interactions in various classes of Stars

How do magnetospheric Star-Star interactions modify stellar activity ?

- Close component
- \Rightarrow interacting magnetosphere
- ⇒ reconnection as one of the component pass through the magnetosphere of the secondary:
 - e.g. Star-Planet Interaction (Shkolnik 2008)
 - e.g. V774 Tau A: cyclical variability of flaring (Torres et al. 2012)
- 3D magnetospheric model :
 - Enhanced magnetic activity
 - Model the coronal emission
 - Location of open field lines

HD 155555 Dunstone et al. (2008) Dunstone & Holwarth, priv. comm.

What is the magnetic impact on outflows and mass transfers ?

- Winds are present in low and high mass stars
- These winds carry away angular momentum
- These winds can be at the origin of mass transfer
- Magnetic fields can play a role in the mass transfer
- e.g. W-UMa stars, RS CVn, Algol ...: magnetic cycles are proposed to be at the origin of the orbital period modulation (Applegate 1992)
- ⇒ Constraints on magnetic fields are crucial to better understand these phenomena

Colliding stellar wind (Russell 2011)

Magnetic wind (ud-Doula & Owocki 2002)

What is the impact of magnetic fields during stellar formation, and vice-versa ?

- Magnetic fields in massive stars is of fossil origin
- But:
 - Magnetic fields observed only in < 10% of intermediate- and high-mass stars (e.g. MiMeS project: e.g. Grunhut et al. 2012)
 - Magnetic fields detected only in one component of SB2s
- Star formation modelling with magnetic field
 => reduce fragmentation => reduce binarity

Commerçon, Hennebelle et al.

Commerçon et al. (2011)

Observing strategy and resources

Spectropolarimetric Observing Strategy: the hot components

- Close SB2 systems:
 - P < 20 d, V < 8 mag, 2 components with SpT > F5
- The hot-SC (Survey Component):
 - ~200 close systems selected in SB2 catalogues (Taylor 2003, Pourbaix et al. 2009, Sana et al.)
 - One or two observations per target
 - aim: statistical properties + new magnetic discoveries
- The hot-TC (Targeted Component):
 - 6 OBA SB2 containing supposedly a magnetic star
 - Monitoring
 - aim: confirmation then follow-up to model the magnetosphere and magnetic fields and to compare with single star magnetosphere and fields

Spectropolarimetric Observing Strategy: the cool TC component

- 11 dwarfs, 4 RS CVn (+ 1-3 cool-PMS)
 - various eccentricities (from 0.00 to 0.34), masses (from 0.16 to 2.5 M_{\odot}), and orbital periods (from 1.88 to 18.78 d)
 - includes 2 eclipsing binaries
 - all show signs of activity
- Aims:
 - obtain magnetic maps of both components
 - study the variations over the orbit for the most eccentric systems
 - compare the magnetic properties with single stars
 - explore magnetic activity under the most extreme conditions (W UMa systems)

Observational resources

- An ESPaDOnS large program (PIs: E. Alecian, G. Wade):
 604 h allocated over 8 semesters (2013A-2016B)
- A Narval large program (PI: C. Neiner):
 - 150 h allocated over 4 semesters (2013A-2014B)
- Additional observing programs
 - Interfero. obs. PIONIER and PAVO (PI: J.-B. Le Bouquin)
 - CHANDRA X-rays observations (PI: C. Argiroffi)
 - Photometric observations (PI: A.-E. Essayed)
 - HARPSpol PI programs (Pis: T. Böhm, R. Fares)

Narval LP Observations

- 339 obs. of 109 targets until now
- 60 hot SC targets + 35 additional SC
- 4 hot TC targets: HD 5550, HD 1976, HD 25558, HD 160922
- 5 cool TC targets:

BH CVn, Capella, sig CrB, OU Gem

=> See Julien's presentation

• 4 cool SC targets:

ER Vul, V1379 Aql, bet1 Cap, IM Peg, BC Psc

=> See Julien's presentation

ESPaDOnS LP Observations

- 436 obs. of 172 targets until now
- 142 hot SC targets
- 11 hot TC targets:

BD-19 5044L, HD 136504, HD 149277, HD 156324, HD 164492 C, HD 25558, HD 34736, HD 37017, Plaskett, HD 55719, HD 56495

• 7 cool TC targets:

BY Dra, ER Vul, FK Aqr, GJ 735, V1878 Ori, V471 Tau

=> See Julien's, Alexis' and Gaitee's presentations

• 12 cool SC targets:

AR Psc, BD+33 4462, BK Psc, EK Cep, GJ 268, GJ 644, BC Psc, KZ And, SAO 90449, TY Pyx, UZ Tau E, UZ Tau W ⇒See Julien's presentation

ESPaDOnS LP Observations

- 6 semesters completed over a total of 8
- Very good completeness

All	Allocated (h)	Validated (h)	Completeness (%)
2013A – 2015B	436	440	101
2016A	63	-	-
2016B	106	-	-

Cool	Allocated (h)	Validated (h)	Completeness (%)
2013 - 2015	135	135	-
2016A	34	-	-

Some results of the hot components

HD 5550 (Ap SrCrEu)

25 Narval obs. Porb = Prot = 6.8 d A: Ap (11400 K), Bd = 65 +- 20 G => The weakest magnetic Ap field B: Am (7800 K), Bd < 40 G Alecian et al. (2016, in press)

Binarity and Magnetic Interactions in various classes of Stars

HD 55719 (A3 V)

Ap orbiting a more massive comp. Porb = 46 d (Bonsack et al. 1976) ecc = 0.11 (with our data) 25 V observations => no var. 9 Q,U observations each => faint var. in U over 1000 d => Gregg Wade

HD 34736 (B9)

Romanyuk & Semenko (2015) ⇒ Short-period magnetic SB2 ESPaDOnS: 10 obs.

- \Rightarrow Confirmed SB2
- \Rightarrow Bz var => Prot = 1.28 d
- \Rightarrow Departure from sin curve
- \Rightarrow Magnetic comp. not synchr.
- ⇒Observing campaing in January 2016 (spectropol. + phot.)

⇒Eugene Semenko

Binarity and Magnetic Intera

HD 156324 (B2 V)

MiMeS detection

- \Rightarrow SB3 system
- \Rightarrow P: He-strong magnetic, S: Teff = 14000-17000 ?
 - T: He-weak Pga

ESPaDOnS, HARPSpol, FEROS data: [#] 0.20

- \Rightarrow Porb = 1.58 d and Porb = 6.66 d
- \Rightarrow Bz var => Prot = 1.58 d

 \Rightarrow Halpha in emission: P = 1.58 d Analysis of the magnetic field and magnetosphere in process

 \Rightarrow Matt Shultz

Alecian et al. (2014), Shultz et al. (in prep.)

Binarity and Magnetic Interactions in various classes of Stars

MiMeS detection

- \Rightarrow Short-period SB2
- BinaMIcS data:
- 11 observations
- \Rightarrow Porb = 11.5 d
- \Rightarrow Prot = 25.4 d
- \Rightarrow Good orb. phase sampling
- ⇒ Need additional data for $\phi_{rot} = [0.0, 0.5]$

 \Rightarrow Matt Shultz

Petit et al. (2013), Shultz et al. (in prep.)

HD 164492 C (O6)

BOB detection Maybe SB2 **BinaMIcS** data: 17 observations \Rightarrow Confirm binarity and magnetism \Rightarrow Prot = 3.625 d \Rightarrow Prob ~ 10 d **Additional** work in progress \Rightarrow Gregg Wade

eps Lupi (B2 IV-V)

MiMeS detection

Maybe both components magnetic BinaMIcS data:

- 9 Deep observations
- \Rightarrow Confirm binarity in 2 components
- \Rightarrow First and unique system
- ⇒Weak var. in Bz
- ⇒Prot unknown
- \Rightarrow R_A > 5.8 R_{*} and sep = 3 4 R_{*} => shared magnetospheres ?
- \Rightarrow Additional data
- \Rightarrow Matt Shultz

Shultz et al. (2015)

©Volkmar Holzwarth, KIS, Freiburg

Binarity and Magnetic Interactions in various classes of Stars

SC: Magnetic vs non-Magnetic

