

universität wien

Stellar rotational evolution on planetary atmospheres in single and binary star systems Colin P. Johnstone

universität wien

Stellar rotational evolution on planetary atmospheres in single and bizzry star systems

Colin P. Johnstone

Stars produce winds and X-ray/EUV radiation

Stars produce winds and X-ray/EUV radiation

Winds/radiation influence evolution of planetary atmospheres dB/dt can mean Eddy-current heating of planet interior

Non-axissymmetric stellar field means planet sees time changing interplanetary B dB/dt can mean Eddy-current heating of planet interior

Non-axissymmetric stellar field means planet sees time changing interplanetary B

Simple case: WX UMa

Dipole field strength = 3.9kG tilt = 40 degrees

Terrestrial planet at 0.046 AU (habitable zone)

Resulting X-ray and EUV (XUV) evolution (Tu et al. 2015)

STELLAR WINDS (...AND THE IMPORTANCE OF ROTATIONAL EVOLUTION)

Using rotational evolution to observationally constrain winds

Matt et al. (2012), Reville et al. (2015)

Wind torque:

Using rotational evolution to observationally constrain winds

Matt et al. (2012), Reville et al. (2015)

Using rotational evolution to observationally constrain winds

Matt et al. (2012), Reville et al. (2015)

Get spin down law:

$$rac{d\Omega_{\star}}{dt} \propto \Omega_{\star}^{0.56a+0.87b+1}$$

 $B_{
m dip} \propto \Omega_{\star}^{1.32}$

Vidotto et al. (2014)

How do we scale large scale field strength? With Rossby number, age, or rotation rate?

Johnstone et al. (2015bc)

Assuming $B_{
m dip} \propto Ro_{\star}^{-1.32}$ gives us...

$$rac{dM_{\star}}{dt} \propto R_{\star}^2 \Omega_{\star}^{1.33} M_{\star}^{-3.36}$$

Johnstone et al. (2015c)

Johnstone et al. (2015bc)

