Investigating the magnetic fields of young solar-twin stars

Lisa Rosén¹, Oleg Kochukhov¹, Thomas Hackman² and Jyri Lehtinen²

¹ Uppsala University
 ² University of Helsinki

The study

Goal: Learn more about the young solar magnetic field

How: Focus on young solar analogues, all from "Sun in Time" sample (Güdel 2007)

- ♦ Ages of 100-600 Myr, all with a mass and temperature similar to the Sun
- ♦ Use spectropolarimetric Stokes IV data
- ♦ Derive maps of surface magnetic field using the same ZDI code for all observations
- ♦ Evaluate possible collective trends and individual results

Observational data

 \diamond Six stars observed for 16 epochs in total \diamond Archival data from Polarbase (Petit et al. 2014). \diamond NARVAL: Resolution ~65000 ♦ Five stars: EK Dra: 2007.1, 2012.1 HN Peg: 2007.6, 2008.6, 2009.5, 2010.5, 2011.5 п¹Uma: 2007.1 χ¹ Ori: 2007.1, 2008.1, 2010.8, 2011.9 к¹ Cet: 2012.8 ♦ Observation program "Active Suns" (Hackman et al. 2015) \diamond HARPSpol: Resolution ~110 000 \diamond Three stars: HN Peg: 2013.7 BE Cet: 2013.7

 κ^{1} Cet: 2013.7

The sample

\diamond All stars are selected from the "Sun in Time" sample

Star	T _{eff} (K)	$\begin{array}{c} Mass \\ (M_{\odot}) \end{array}$	P _{rot} (d)	Age (Myr)	Membership
EK Dra	5845	1.044	2.6	. 100	Pleiades
HN Peg	5974	1.103	4.6	•230	Hercules- Lyra
π^1 Uma	5873 •	1.00	4.9	270	Ursa Major
χ^1 Ori	5882	1.028	5.08	300	Ursa Major
BE Cet	5837	1.062	7.65	500	Hyades
$\kappa^1 \operatorname{Cet}$	5742	1.034	9.2	600	

Valenti & Fischer 2005, Takeda et al. 2007, Strassmeier & Rice 1997, Montes et al. 2001a,b, Boro Saikia et al. 2015, Eisenbeiss et al. 2013, King et al. 2003, Messina & Guinan 2003, Güdel 2007, Gonzalez et al. 2010

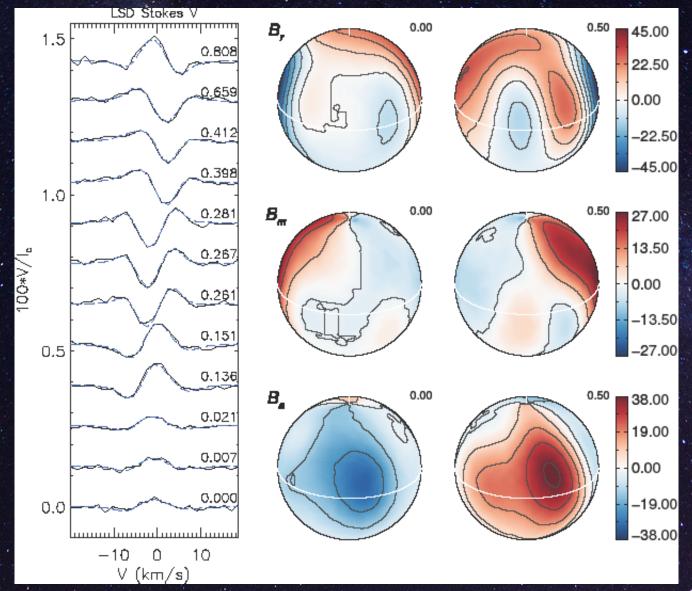
Polarisation profile analysis

No polarisation signatures in individual lines
 Apply least-squares deconvolution to increase S/N

♦ ZDI using the single-line approximation of LSD profiles (weak field and no linear polarisation)

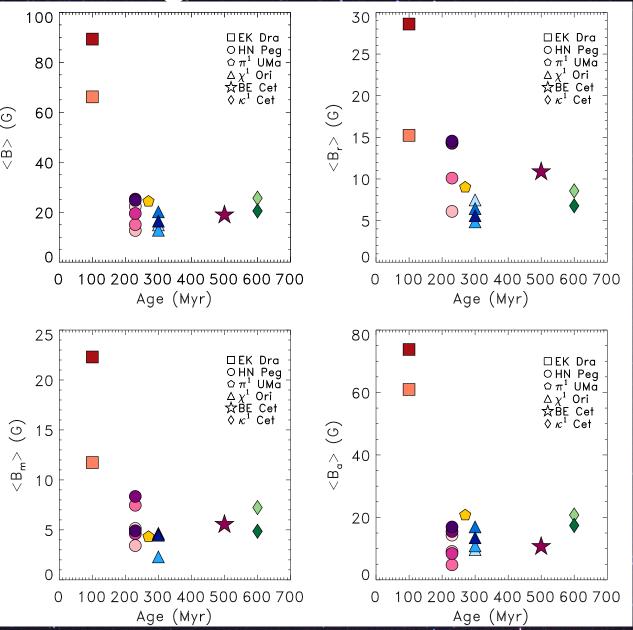
Only one target, EK Dra, showed any distortion in Stokes I

 \diamond Brightness mapping together with magnetic field mapping


Mean longitudinal magnetic field 40.5 G 16.0 G -21.0 G 32.0 G 7.5 G HN Peg π^1 UMa EK Dra 20 30 40 20 10 20 10 B_{z} (G) $\langle B_{z} \rangle (G)$ $\langle B_{z} \rangle$ (G) 0 0 0 -10-20 -10-20 -40-20-300.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 Rotational phase Rotational phase Rotational phase κ^1 Cet χ^1 Ori BE Cet 10 15 10 10 5 5 5 $\langle B_{z} \rangle$ (G) (C) $\langle B_{z} \rangle$ (G) $<\!\mathsf{B}_z\!>$ 0 0 0 -5 -5 -5 -10-10-10-150.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Rotational phase Rotational phase Rotational phase 9.4 G 7.5 G 8.2 G -3.0 G -6.4 G

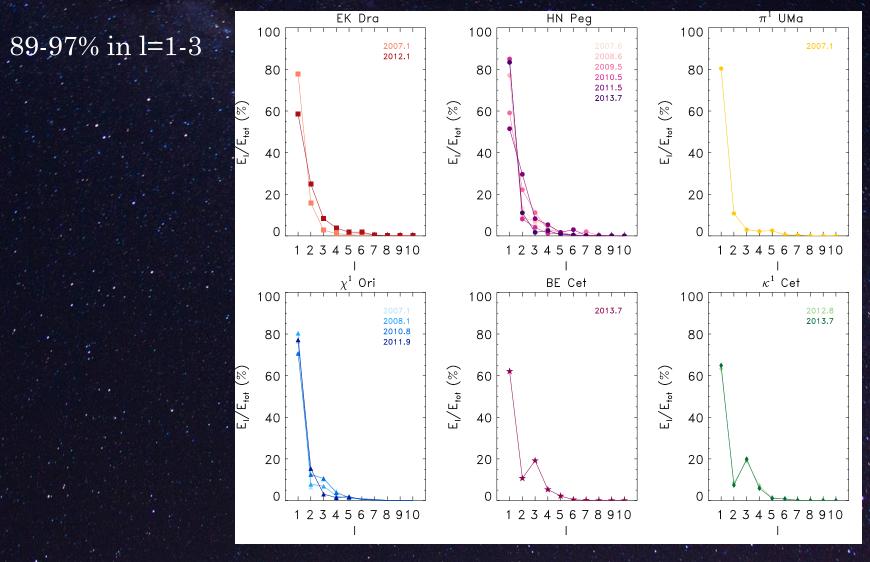
♦ Complex magnetic fields
♦ Decreasing with age?

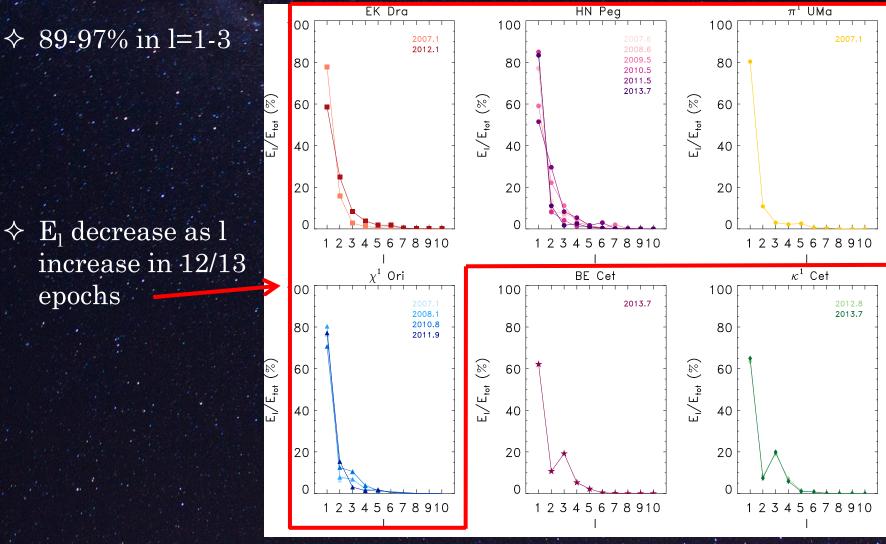
0.4 G


BE Cet

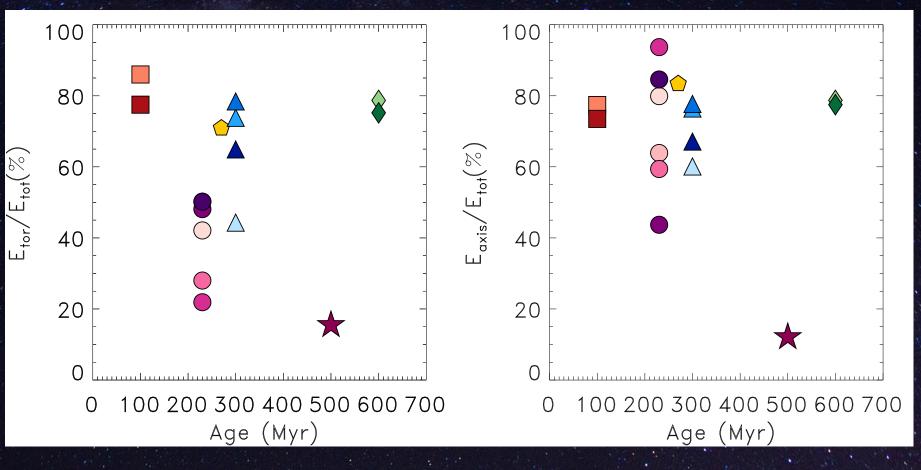
2013.7

Mean magnetic field

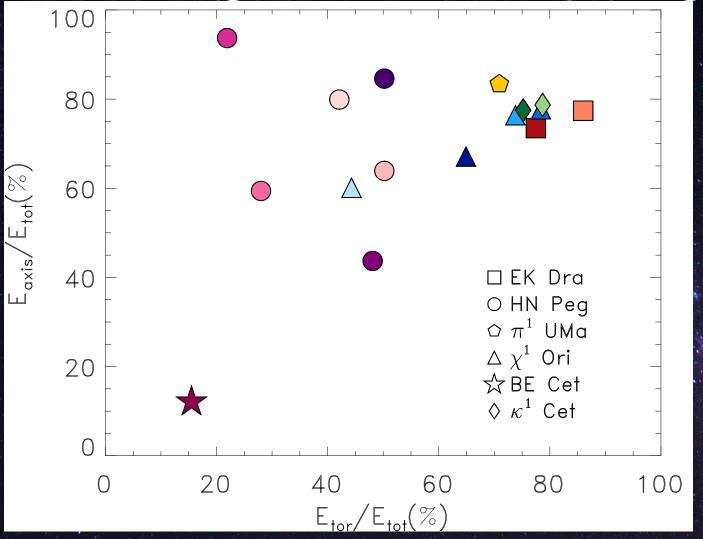

- ♦ Significant decrease of and <B_a> from 100-200 Myr
- ♦ Similar variation between different epochs of the same star as between different stars
- - in 13/16 epochs



Possible trends and other results


- $\diamond B_z$ decreasing with age
- \diamond decrease from 100-200 Myr, but then ~ similar
- ♦ Decrease in B_z due to change in topology rather than field strength?
- $\diamond < B_a >$ field is strongest in 13/16 epochs
 - \diamond Free of cross talk?
- $\diamond < B_m > field is weakest in 15/16 epochs$
 - \diamond Underestimated with Stokes V only

 \diamond



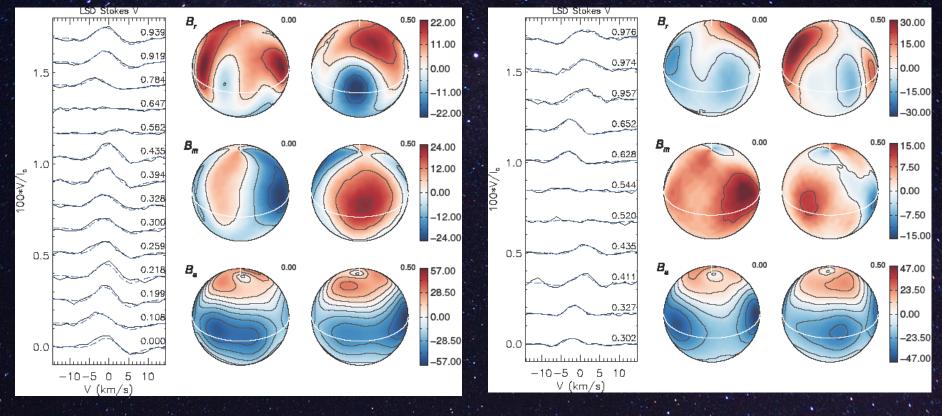
 $\diamond E_{l=3} = 2 \times E_{l=2}$

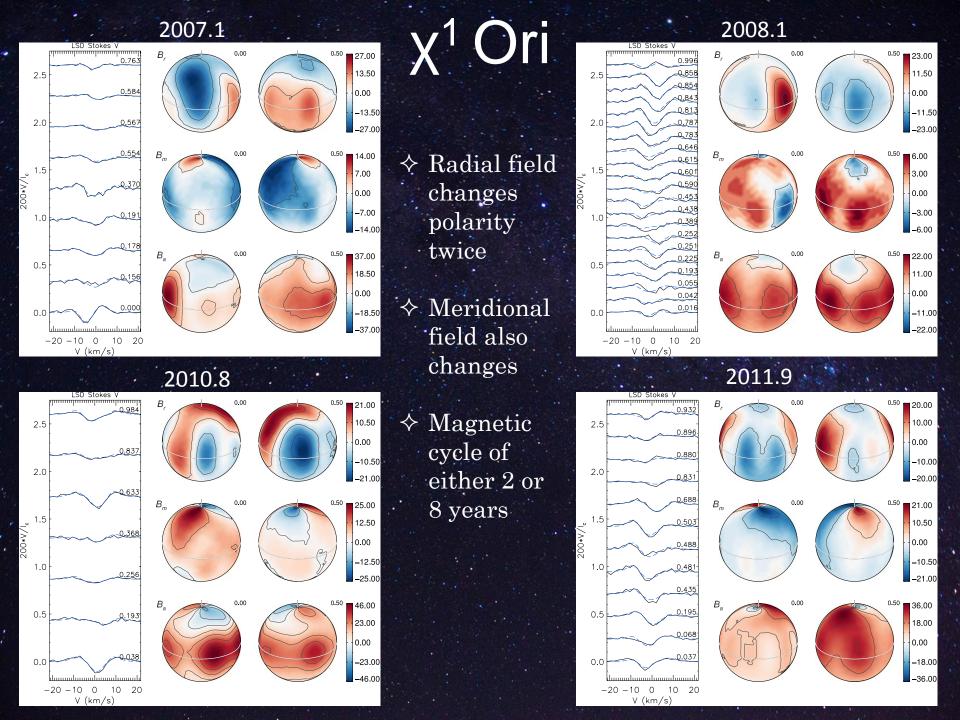
♦ Dominantly toroidal in 8/16 epochs +3 where E_{tor}≈E_{pol} ♦ Dominantly axisymmetric in 14/16 epochs

♦ Follows the relation E_{axis}≥E_{tor} (See et al. 2015)
♦ No trend with age, youngest and oldest star have similar topology
♦ BE Cet lowest E_{axis} and E_{tor}

Possible trends and other results

- $\diamond B_z$ decreasing with age
- \diamond decrease from 100-200 Myr, but then ~ similar
- ♦ Decrease in B_z due to change in topology rather than field strength?
- $\diamond < B_a >$ field is strongest in 13/16 epochs
 - \diamond Free of cross talk?
- $\diamond < B_m > field is weakest in 15/16 epochs$
 - \diamond Underestimated with Stokes V only
- Two oldest stars have twice as large octupole compared to quadrupole component
- ♦ Magnetic field is dominantly toroidal for half the epochs (+ 3 close to 50%).
 - \diamond No trend with age


Magnetic cycles?


- ♦ EK Dra and HN Peg show the same radial polarity for all epochs

к¹ Cet

2012.8

2013.7

Possible trends and other results

 $\diamond B_z$ decreasing with age

- \diamond decrease from 100-200 Myr, but then ~ similar
- \diamond Decrease in B_z due to change in topology rather than field strength?
- $\Rightarrow \langle B_a \rangle$ field is strongest in 13/16 epochs \Rightarrow Free of cross talk?
- $\diamond < B_m > field is weakest in 15/16 epochs$
 - \diamond Underestimated with Stokes V only
- Two oldest stars have twice as large octupole compared to quadrupole component
- ♦ Magnetic field is dominantly toroidal for half the epochs (+ 3 close to 50%).
 - \diamond No trend with age

 \diamond Possible magnetic cycle for χ^1 Ori

Thank you!